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ABSTRACT
We quantify the error in the results of mixed baryon–dark-matter hydrodynamic simulations,
stemming from outdated approximations for the generation of initial conditions. The error at
redshift 0 in contemporary large simulations is of the order of few to 10 per cent in the power
spectra of baryons and dark matter, and their combined total-matter power spectrum. After
describing how to properly assign initial displacements and peculiar velocities to multiple
species, we review several approximations: (1) using the total-matter power spectrum to
compute displacements and peculiar velocities of both fluids, (2) scaling the linear redshift-zero
power spectrum back to the initial power spectrum using the Newtonian growth factor ignoring
homogeneous radiation, (3) using a mix of general-relativistic gauges so as to approximate
Newtonian gravity, namely longitudinal-gauge velocities with synchronous-gauge densities
and (4) ignoring the phase-difference in the Fourier modes for the offset baryon grid, relative
to the dark-matter grid. Three of these approximations do not take into account that dark matter
and baryons experience a scale-dependent growth after photon decoupling, which results in
directions of velocity that are not the same as their direction of displacement. We compare
the outcome of hydrodynamic simulations with these four approximations to our reference
simulation, all setup with the same random seed and simulated using GADGET-III.
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1 IN T RO D U C T I O N

Upcoming large-scale surveys such as LSST,1 Euclid2 and SKA3

will map the three-dimensional spatial distribution of galaxies and
cosmic neutral hydrogen with an unprecedented precision over very
large cosmological volumes. The goal of these surveys is to tightly
constrain the values of the parameters in the current cosmological
paradigm, and thus to learn about the nature of dark energy, the
geometry of the Universe and the nature of the initial conditions of
the Universe.

The constraints on the cosmological parameters are derived by
comparing cosmological observables, such as the shape of the power
spectrum or the position of the baryon acoustic oscillation (BAO)
peak against predictions from theory. Hence, in order to decrease
the error on the parameters, two ingredients are needed: precise
cosmological observable measurements and accurate theoretical
predictions.

� E-mail: wessel.valkenburg@cern.ch (WV); fvillaescusa@simonsfounda-
tion.org (FV-N)
1 https://www.lsst.org/
2 http://www.euclid-ec.org/
3 https://www.skatelescope.org/

Theoretical predictions at the linear order are extremely ac-
curate. For instance, codes such as CAMB (Lewis, Challinor &
Lasenby 2000) or CLASS (Lesgourgues 2011a) can compute the
linear matter power spectrum to a precision of 0.01 per cent
(Lesgourgues 2011b), by numerically integrating the hierarchy of
the Boltzmann equations. Unfortunately, while linear theory is valid
at all scales only in the early Universe, in the late Universe its va-
lidity is limited to the largest scales. For instance, non-linear grav-
itational evolution induces a damping and broadening on the BAO
peak (Crocce & Scoccimarro 2008; Padmanabhan & White 2009;
Baldauf et al. 2015; Peloso et al. 2015; Blas et al. 2016) that takes
place on very large scales (∼100 h−1 Mpc).

Having accurate theoretical predictions of cosmological observ-
ables in the mildly or fully non-linear regime is one of the main
topics of current cosmological research. The goal is to maximally
profit from the aforementioned future observations in these regimes,
and leave no information unexploited.

For example, a falsification of the cosmological constant as the
sole force driving the accelerated expansion of the Universe would
have far-going consequences for our understanding of physics.
Moreover, a deeper understanding of the formation of structure
in the Universe can shed light on gravity, the nature of dark matter
and the mass of neutrinos. Thus, the constraints on the cosmological
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parameters can be largely tightened by employing the information
contained in that regime.

There are different ways to approach the mildly non-linear
regime. The most important ones are perturbation theory and numer-
ical simulations. Plain perturbation theory (Bernardeau et al. 2002)
has proven as a very powerful tool to study the mildly non-linear
regime as is currently employed in cosmological analysis (see e.g.
Alam et al. 2016; Chuang et al. 2016; Salazar-Albornoz et al. 2016;
Sanchez et al. 2016). Unfortunately, perturbation theory will break
down when the amplitude of any perturbation in the system becomes
large.

Attempts to go beyond plain perturbation theory are made, under
the common name of effective field theories (EFTs; Anselmi &
Pietroni 2012; Baumann et al. 2012; Carrasco, Hertzberg &
Senatore 2012; Manzotti et al. 2014; Blas et al. 2015; Lewandowski
et al. 2015; Floerchinger et al. 2017; Foreman & Senatore 2016). An
EFT allows one to parametrize the effect of the unknown (or at least
uncomputable) physics of, in this case, the small highly non-linear
scales, on the scales at study in the mildly non-linear regime and
vice versa. In EFTs, the perturbations on large scales are then no
longer described by perturbations in a pure dark-matter fluid, but by
perturbations on a fluid endowed with a sound speed, equation of
state, bulk and shear viscosities, and higher order parameters. The
values of these parameters need to be gauged using the results of
fully non-linear simulations. But once known, they can be used to
perform higher order perturbation theory on the effective fluid, thus
slightly enlarging the regime of validity of perturbation theory. EFT
is then hoped to be useful for decreasing the number of simulations
necessary for the exploration of parameter space. Nevertheless, for
EFT to be useful, simulations must first reach the desired accuracy.

Under all other circumstances, i.e. in the fully non-linear regime,
theoretical predictions are limited to the output of numerical simu-
lations. Numerical simulations are one of the most, if not the most,
powerful tools available to study cosmology, since they provide in-
formation on all regimes (from linear to fully non-linear) and in all
the ingredients involved in relating theory with observations: mat-
ter power spectrum, redshift space distortions and galaxy/halo bias.
Cosmological numerical simulations can be classified in two broad
categories: (1) N-body simulations, where the evolution of a set
of collisionless particles is numerically integrated and (2) hydro-
dynamic simulations, where the gravitational evolution is solved
together with the equations governing the hydrodynamic forces
affecting baryons. Usually, hydrodynamic simulations include an
N-body simulation to model the dark-matter dynamics in addition
to the hydrodynamics.

The output of numerical simulations depends on several factors
such as the accuracy of the integrator, the method used to compute
forces, the way the initial conditions are generated, the volume sim-
ulated and so on. The method and value of the parameters control-
ling these ingredients have to be wisely chosen given the accuracy
required for the simulation output. A comparison among the output
of different codes, the impact of mass resolution and volume ef-
fects has been recently investigated in Schneider et al. (2016). The
purpose of the this paper is to study the impact of various simplifica-
tions used when generating the initial conditions, paying particular
attention to the case of hydrodynamic simulations. In particular, we
will identify systematic errors commonly committed when gener-
ating the initial conditions and its impact in terms of cosmological
observables.

Our focus lies on the connection between linear theoretical trans-
fer functions, and the initial density and velocity fields of baryons
and dark matter in numerical simulations. The issue of initial con-

ditions for multiple species was addressed by some references.
Yoshida, Sugiyama & Hernquist (2003) focused on much smaller
scales, not relevant for BAO. Angulo, Hahn & Abel (2013) adapted
velocities computed in the longitudinal gauge, an approximation
that later was pointed out not to be entirely correct (see the body
of the paper for a clarification and quantification of this statement).
At last, Valkenburg & Hu (2015) focused on scale dependence in
scalar fields, paying no attention to baryons. We do not focus on the
issue of resolution, for which we direct the reader to, for example,
Gabrielli, Joyce & Sylos Labini (2002) and Garrison et al. (2016).

This paper is organized as follows. In Section 2, we discuss
the gauge in which initial conditions are generally generated and
the impact of relativistic effects on them. We discuss the different
approximations people usually employ when creating the initial
conditions in Section 3. In Sections 4 and 5, we quantify the errors
induced by employing the different approximations. Finally, we
draw the main conclusions of this work in Section 6.

2 C O N S I S T E N T IN I T I A L C O N D I T I O N S

2.1 Relativistic versus Newtonian gravity

Apart from a few exceptions (Adamek et al. 2016; Bentivegna &
Bruni 2016; Giblin, Mertens & Starkman 2016), cosmological sim-
ulations are predominantly done using Newtonian gravity (Kuhlen,
Vogelsberger & Angulo 2012). Relativistic effects can occur at two
ends of the simulation spectrum: near black holes (small scales)
and when scales become comparable to and larger than the Hubble
radius (large scales). In order for a Newtonian simulation to be an
accurate realization of the cosmological model, black holes must
form only below the resolution of the simulation, and Hubble radius
effects must be under control.

The former assumption may be questioned, as mass estimates of
the largest observed (possible) black holes range up to O(1010) M�
(Thomas et al. 2016), which contain an amount of mass that orig-
inates from a primordial comoving volume of O(1) Mpc3. This
question is however not part of this work.

Let us summarize why the latter assumption, that relativistic
effects at scales beyond the Hubble radius are under control, seems
correct.

First, consider the effect of small-scale non-linearities on large-
scale modes, the short-long coupling.

Formally, when any scale becomes non-linear, the entire linear
perturbation theory is invalidated, as one has no control over inter-
action between short- and large-scale modes. However, as argued
in Peebles (1974), small, random, momentum conserving displace-
ments introduce additional power ∝k4 in the power spectrum.4 The
implication is that at least at the onset of the first non-linearities on
small scales, the linear perturbation theory for large scales remains
valid. The question until when it remains valid, is to be answered by
simulations. Admittedly, this argument is only perturbatively true.

Simulations, however, confirm that the effect of small scales on
large linear scales remains negligible even beyond the initial onset

4 To repeat the argument of Peebles (1974) in brief: a random small displace-
ment of masses on short scales implies a differentiation of the density field,
effectively introducing a factor of k in Fourier space. A random displacement
that conserves momentum however, such as one caused by gravitational dy-
namics, lets the displacements of the masses cancel in pairs, such that it only
introduces a second derivative, k2, in the density field, and hence introduces
additional power ∝k4 in the power spectrum.

MNRAS 467, 4401–4409 (2017)



Multispecies initial conditions 4403

of non-linearities: the transition from linear to non-linear dynamics
is hierarchical, moving from small scales to large scales. This means
that at any time one can always go to large enough scales to find that
linear perturbation theory still gives the correct description there.
This holds in both Newtonian and relativistic simulations (Adamek
et al. 2016).

Secondly, consider the effect of large modes on the small-scale
non-linear dynamics. Small-scale non-linear modes obviously are
coupled to the large-scale linear modes (hence the term non-linear).
Since the non-linear effects are large, one may wonder what the
effect of a change in large-scale perturbation theory would be on
small-scale modes. This worry may be fed by the observation that
relativistic perturbation theory may show different behaviour on
super-Hubble scales than on sub-Hubble scales, a distinction that
is absent in Newtonian gravity. However, in the following sections
we argue why this worry is unfounded when one considers pres-
sureless species only, such as dark matter and baryons (after photon
decoupling). In brief, Newtonian and relativistic gravity provide
the same large-scale linear behaviour for pressureless matter when
there are no perturbations in relativistic species such as photons
and neutrinos. Hence, the coupling between small- and large-scale
modes is taken into account correctly in Newtonian simulations.
Super-Hubble effects on perturbations in pressureless matter are a
gauge artefact, which we clarify in Sections 2.2 and 2.3.

2.2 N-body gauge in brief

The Friedman–Lemaı̂tre–Robertson–Walker metric in conformal
time endowed with scalar perturbations only, in an arbitrary gauge
can be written as

ds2

a(τ )2
= −(1 + 2A)dτ 2 − 2Bidτ dxi

+ [
(1 + 2HL)ηij + 2hT

ij

]
dxidxj , (1)

with the Minkowsky metric ημν , and

Bi =
∫

d3k

(2π)3

ki

k
Bkeik·x, (2)

hT
ij =

[
∂i∂j

∇2
− 1

3
ηij

]
HT . (3)

The dimensionless A, B, HL and HT are small compared to 1, and
depend on the coordinates.

The perturbations in a pressureless fluid in an arbitrary gauge
are

˙̄ρ = −3Hρ̄, (4)

�̇ρ = −θ − 3ḢL, (5)

θ̇ + kḂ = k2A − H(θ + kB), (6)

where �ρ ≡ δρ/ρ̄, H ≡ ȧ(τ )/a(τ ), ˙ ≡ d/dτ and τ is the confor-
mal time. Both dark matter and baryons satisfy these equations at
the redshifts where initial conditions for simulations are typically
set, and only differ in their initial values for density ρ and peculiar
velocity θ = ∇ · u. Note that at this point we are only considering
linear perturbations after photon decoupling, in which case baryons
can be described as a pressureless fluid, just like dark matter.

The Newtonian equivalent of these equations are

˙̄ρ(newt) = −3Hρ̄(newt), (7)

�̇(newt)
ρ = −θ (newt), (8)

θ̇ (newt) = k2A − Hθ (newt), (9)

where A is identified with the Newtonian potential.
A gauge can be chosen where in the presence of solely a single

pressureless matter species, equations (4)–(6) and equations (7)–
(9) match, and where the potential A satisfies the Poisson equation,
−k2A = 4πGNρ̄a2δ, the N-body gauge (Fidler et al. 2015, see also
Flender & Schwarz 2012). In the N-body gauge, the full set of equa-
tions (4)–(6) become identical to equations (7)–(9), both completed
by the same Poisson equation. Clearly, the implication is that at the
linear level and in the presence of only pressureless matter, Newto-
nian gravity solvers correctly give the general-relativistic solution.

Beware that this solution deviates from the old standard lore of
either (a) identifying the longitudinal gauge with that of Newtonian
gravity, or (b) combining peculiar velocities from the longitudi-
nal gauge with densities from the synchronous comoving gauge,
as was done previously (e.g. Chisari & Zaldarriaga 2011; Rampf,
Rigopoulos & Valkenburg 2014; Hahn & Paranjape 2016).

As explained in Fidler et al. (2015), the matter density spectra〈
ρ2

k

〉
in the N-body gauge are equal to that of any comoving gauge,

e.g. the matter density spectra in the synchronous comoving gauge.
It is then straightforward to conclude that velocities can be obtained
easily and consistently by taking the time derivative of synchronous-
gauge density perturbations, as readily obtainable from standard
Boltzmann solvers such as CLASS (Lesgourgues 2011a) and CAMB

(Lewis et al. 2000).

2.3 Horizons and Newtonian simulations

It is common lore to speak of the Hubble radius as a horizon, and
to think differently of super- and sub-Hubble modes in linear per-
turbation theory. Let us reiterate some arguments that can be found
in Sawicki et al. (2013), in order to alleviate any misunderstand-
ing. First of all, the cosmic (or particle) horizon c

∫
dt a−1(t) is not

equal to the Hubble radius 1/H(t); super-Hubble modes grow just
as happily as sub-Hubble modes in the late universe in the standard
cosmological model. Gravity acts beyond the Hubble radius. Even
stronger, in absence of relativistic species, such as in a pure dust
Universe with an optional cosmological constant, the growth on
super- and sub-Hubble scales is the same. This is no longer the case
when neutrino and photon perturbations are taken into account.

There are possibly two scales that can play a role in the per-
turbations in a single fluid: (1) the Compton scale, which roughly
speaking determines the transition from a classical to quantum me-
chanical description, and which we will ignore here, and (2) the
Jeans scale or sound horizon, which is set by the fluid’s sound
speed. On scales below the Jeans scale, the perturbations are af-
fected by the fluid’s pressure. On scales above the Jeans scale, the
perturbations in the fluid behave by all means as if it were pressure-
less: dust. Note that the background expansion does depend on the
fluid’s pressure, on all scales.

For a pressureless fluid, the sound speed and hence Jeans length
are zero, which is reflected by the scale independence of the growth
of dark-matter perturbations in any comoving gauge. This proves
that the Hubble radius plays no role in the perturbations. The state-
ment is reinforced by the existence of the N-body gauge, as ex-
plained in the previous section. The scale-dependent growth of dust
perturbations in the longitudinal gauge is truly a gauge artefact.

During inflation on the other hand, in the most common models,
the sound speed of perturbations is equal or close to the speed of
light, such that the scale that enters in perturbation equations for
scalar perturbations is linearly related to that in (geometrical) tensor
perturbations, which also propagate at the speed of light. The Jeans
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length corresponding to a sound speed equal to the speed of light is
proportional to the Hubble parameter.

When photons and baryons are still tightly coupled, the sound
speed in that coupled matter is one-third of the speed of light, such
that the sound horizon (Jeans length) does behave proportional to
the Hubble radius, but its effect has nothing to do with General
Relativity and the presence of a particle horizon.

A common method used to generate initial conditions for nu-
merical simulations consists in computing the z = 0 linear power
spectrum through CAMB or CLASS and ‘rescale’ its amplitude to the
starting redshift of the simulation. The ‘rescaling’ is carried out
by using the same Newtonian physics that the simulation follows,
which translates into a scale-independent growth for the 
 cold dark
matter model (see Zennaro et al. 2017 for the rescaling implementa-
tion in massive neutrino cosmologies). This method guaranties that
the power spectrum from a Newtonian simulation at low redshift on
linear scales will agree with the output of Boltzmann solvers, while
it will differ at high redshifts. An often heard argument for this
approximation is that a Newtonian simulation does not correctly
model super-Hubble effects, because it has no knowledge of Gen-
eral Relativity. As per the N-body gauge and the above arguments,
this is a misunderstanding: the Hubble radius and its effect on linear
dust perturbations are only present in particular coordinate gauges
(such as the longitudinal gauge), which are simply not the coordi-
nate gauge in which a Newtonian simulation acts. The growth factor
used for this re-scaling, in retrospect, is relativistic as it is identical
to the growth factor in the N-body gauge. What is wrong about this
approach though is that it treats baryons and dark matter as if they
were the same single species.

Regardless of horizons however, what is indeed a mismatch be-
tween Newtonian perturbations modelled in a simulation, and the
linear perturbation theory solved for in a relativistic Boltzmann code
such as CAMB and CLASS, is the effect of perturbations in relativistic
species. Newtonian simulations (apart from Brandbyge et al. 2017)
do not take the 1 per cent contribution to the amplitude of perturba-
tions in the gravitational potential into account, as argued in Sec-
tion 2.4.2. This is the only valid argument for applying the rescal-
ing: Ti(τ (zi), k) = DN(zi)/DN(z = 0)Ti(τ (z = 0), k), where zi is
the simulation starting redshift. Still, the rescaling needs to prop-
erly take into account the physical model that is simulated; each
of the species may have its own transfer function (growth factor),
depending on the simulation that will be run (Yoshida et al. 2003;
Angulo et al. 2013; Zennaro et al. 2017).

The aim of this paper is exactly to show that ignoring the relative
difference between baryons and dark matter is of much greater
importance than the ∼1 per cent effect (limited to very large-scales)
of ignoring the perturbations arising from relativistic species.

2.4 Multiple species

The N-body gauge reduces to Newtonian perturbation theory only
when a single pressureless species is present.

2.4.1 Baryons and dark matter

Provided that all perturbations are adiabatic (that is, there are no
iso-curvature perturbations), baryons and dark matter (and all other
species, for that matter) have identical power spectra, and behave
as a truly single pressureless species (Sawicki et al. 2013). There-
fore, no relativistic corrections on super-Hubble scales are to be
suspected.

Deep inside the Hubble radius, Newtonian perturbation theory
is anyway known to be in agreement with relativistic perturbation

theory (Bernardeau et al. 2002), because velocities are small com-
pared to the speed of light. The evolution of both species differs
from a simple single species (total-matter) scenario, at linear and
higher order (Somogyi & Smith 2010; Bernardeau, Van de Rijt &
Vernizzi 2012; Schmidt 2016), the linear part of which is correctly
described by the synchronous-gauge density spectrum and its time
derivative. In other words, both Newtonian and relativistic perturba-
tion theory agree on the relation between single- and multi-species
evolution on sub-Hubble scales.

Precisely at the Hubble radius, a difference between Newtonian
and relativistic perturbation theory could arise from a large differ-
ence in the velocities of baryons and dark matter. This difference
is sourced by the coupling between photons and baryons, which, if
present, anyway invalidates Newtonian perturbation theory. Hence,
if initial conditions for a simulation are set sufficiently far after
photon decoupling (which happens at a redshift of z � 1100), such
as for example zi = 127 as in this paper, there will be no error:
one can safely endow species with the relativistic power spectrum
computed in the synchronous gauge, and with velocities that are de-
termined by the time derivative of the synchronous-gauge density
power spectrum.

2.4.2 Ignoring perturbations in neutrinos and photons

The power spectra that we use for the generation of initial conditions
are computed using the Boltzmann code CLASS for a cosmology
that includes perturbations in photons and neutrinos. These are
absent in the N-body gauge. Using CLASS one can easily verify that
these relativistic species contribute up to 1 per cent in power in the
gravitational potential at redshift z = 127. Their (linear) contribution
however quickly decays. Since their contribution is much less than
that of baryons (e.g. Palanque-Delabrouille et al. 2015; Cuesta, Niro
& Verde 2016), the error from incorrectly taking their contribution
into account should be much less than that of providing baryons
the wrong initial spectrum, however still of the order of per cents
(Brandbyge et al. 2017). Moreover, the relativistic shear introduced
by massive neutrinos has been found to be undetectable, when
comparing relativistic (Adamek et al. 2016) to Newtonian (Zennaro
et al. 2017) simulations. Nevertheless, the fact that we make the
same systematic approximation in the various approaches that we
test means that our qualitative conclusions about baryons relative
to dark matter probably are robust.

3 VA R I O U S A P P ROX I M AT I O N S
I N T H E L I T E R AT U R E

Initial conditions that carry adiabatic perturbations for multiple
species are generated by first setting up a single source density field
ρk,ini (Angulo et al. 2013; Valkenburg & Hu 2015) and convolving
with the transfer function for each species i,

δxi = −L−3/2
∞∑

k=−∞

ik
k2

Ti(τ, k)ρk,inie
ik·x, (10)

vi = d

dτ
δxi = −L−3/2

∞∑
k=−∞

ik
k2

d

dτ
Ti(τ, k)ρk,inie

ik·x . (11)

Our reference approach consists of taking the synchronous-gauge
transfer function Ti(τ, k) of each specific species from CLASS at
redshift z = 127. The simplicity of the correct approach leaves no
reason for any of the following approximations, the errors of which
are under study here.
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Figure 1. Linear growth rate of baryons (green), dark matter (magenta)
and total matter (blue) at z = 127 from CLASS for the cosmological model
considered in this work. While the growth rate of total matter is scale-
independent on scales below the horizon, the growth rates of dark matter
and baryons in particular, exhibit a significant scale-dependence.

In the next subsections, we describe four approximations. The
widely used codes N-GENIC (Springel et al. 2005) and 2LPTIC

(Scoccimarro 1998, based on N-GENIC) make all approximations
in Sections 3.1, 3.2 and 3.4 at once. The public code MUSIC (Hahn
& Abel 2011) makes the approximation of Section 3.3.

3.1 All as total matter

The first and oldest approach (see e.g. Evrard 1988) is to give both
dark matter and baryons the power spectrum of total matter, which
is a weighted sum of the baryons (Tb) and dark matter (Tdm) transfer
functions:

Tm =
(

�b

�m

)
Tb +

(
�dm

�m

)
Tdm, (12)

where �m = �b + �dm. In this case, the initial displacements are
computed using the above power spectrum for each species and the
peculiar velocities are assigned using the scale-independent growth
of total matter (see Fig. 1). This approximation is used in N-GENIC
and 2LPTIC.

3.2 Rescaling P(k, z = 0), ignoring radiation at the
background level

Often simulations take only Newtonian matter species (dark mat-
ter and baryons) and a cosmological constant into account when
computing the Hubble factor, which enters the dynamics as an ef-
fective friction on the particles motion. The detailed evolution of
the linear power spectrum is slightly different in a Universe without
radiation, as it does not show the small scale-dependent growth near
the Hubble radius that is present in a Universe with a homogeneous
radiation component. It is therefore custom to take the redshift z = 0
output of a Boltzmann code, and scale it back to the starting redshift
using the Newtonian, scale-independent radiationless growth factor
DN(k, z) = DN(z):

Ti(τ (zi), k) =
(

DN(zi)

DN(z = 0)

)
Ti(τ (z = 0), k). (13)

Since at redshift zero, the baryons have fallen into the potential of
dark matter, the rescaling approach provides baryons with practi-
cally the same spectrum as dark matter even at the initial redshift,
making this approach very similar to the total-matter approximation
above. This approximation is used in N-GENIC and 2LPTIC.

3.3 Longitudinal-gauge velocities

This approximation is made in the public code MUSIC (Hahn &
Abel 2011) and consists in computing displacements and pecu-

liar velocities through the power spectrum in the synchronous and
longitudinal gauge, respectively. The longitudinal gauge is defined
by choosing Bi = hT

ij = 0 in equation (1). When in addition to
this gauge choice, the solution for a certain matter content dic-
tates ḢL = 0, such as in a pure dust Universe, the velocities on
sub-Hubble scales in this gauge correspond to those of the N-body
gauge. However, at the linear level, at early times the residual ra-
diation perturbations cause a small time dependence in HL. At late
times, a cosmological constant cause an additional time dependence
in HL. These effects are small, as is evident from the solid line for
‘longitudinal-gauge velocities’ in Fig. 4: linear theory predicts only
a minimal error at intermediate to large scales. In summary, this
approximation assigns the wrong velocities on scales at and beyond
the Hubble radius, which is inside the simulation volume at initial
redshifts. Note that this approach differs from the fiducial model
only at the level of velocities. The displacements are identical to the
fiducial approach.

3.4 Offset grids

In order to avoid spurious two-particles interactions caused by plac-
ing baryons and dark-matter particles at identical positions before
convolving with their respective transfer functions, one needs to
offset the baryons by half the interparticle distance, on a staggered
grid (see Yoshida et al. 2003, for the impact of setting the initial
conditions using grid or glass files). Using a Fourier transform, this
can be done exactly by (Angulo et al. 2013)

f (x + y) =
∫

d3k

(2π)3
e−ik·xe−ik· yfk, (14)

such that the values of the field in a grid offset by a constant delta
in each dimension are obtained by adding a constant phase to the
field in fourier space:

fk → fk′ = e−ik· yfk. (15)

Many existing simulations do not take this phase shift into ac-
count, and provide baryons and dark matter with identical displace-
ments and velocities while placing them on offset positions. Note
that the error associated with the way mode amplitudes are set on
the regular grid in Fourier space has been recently studied in Falck
et al. (2016).

When one uses the phase shift as described here, in practice one
interpolates a grid of N3 points on an offset grid of N3 intermediate
points. This means that the discrete set of points actually is capable
of representing power at higher frequencies than a single grid can.
The interpolation implies that this higher frequency power is artifi-
cially cutoff by a tophat filter. One may argue that it would be more
realistic to actually generate the initial power on a (2N)3 grid, and
sample the two staggered N3 grids on that higher resolution grid,
such that no power goes missing. One downside is that one needs
to be able to fit the (2N)3 grid in memory. The actual effects of this
interpolation and power cutoff are left open for further research.

The offset is correctly applied in MUSIC, and incorrectly omitted
in N-GENIC and 2LPTIC.

4 E R RO R S AT T H E I N I T I A L T I M E

At the time of setting initial conditions, one disposes of the practi-
cally exact Boltzmann solutions for the linear power spectra. One
can hence straightforwardly quantify the errors made in the spectra
of the species by comparing the effective transfer functions used
for each species to the reference transfer function, as shown in
Fig. 2. Clearly, the various approaches introduce an error of several

MNRAS 467, 4401–4409 (2017)



4406 W. Valkenburg and F. Villaescusa-Navarro

Figure 2. Comparison between the velocity (upper row) and density (bot-
tom row) power spectra of dark matter (left-hand column) and baryons
(right-hand column) between the initial conditions generated according to
each approximation and the prediction of CLASS at z = 127. Absence of
a line means that the error is zero. The vertical black line indicates the
wavenumber that corresponds to the Hubble parameter in comoving coordi-
nates, kHubble = 2π/aH . Note that ‘Rescaling P(k, z = 0)’ implies ignoring
radiation at the background level, such that redshift and growth factor do
not map properly to our reference model.

per cent in both baryonic and dark-matter power spectra. It is im-
portant to point out that this applies to the spectra for both den-
sities (which give displacements) and peculiar velocities. Notably,
baryons have a different scale-dependent growth than dark matter,
and hence will have varying directions (Valkenburg & Hu 2015).

The approach of ‘wrong offsets’ (equation 3.4) formally gives
both baryons and dark matter the correct power spectrum. Yet, in
this setup the total-matter power spectrum will be wrong, as the
addition of waves with the wrong phase leads to cancellations in the
total density distribution. However, in the limit of infinite resolution,
the error in this approach tends to zero, as the relative offset between
the dark-matter and baryon grids tends to zero.

5 R E S U LT I N G E R RO R S AT E N D
O F S I M U L AT I O N

In this section, we compare the result of a hydrodynamic simulation
run with the initial conditions generated without assumptions (our
fiducial model) versus the results of different hydrodynamic simu-
lations whose initial conditions are generated employing the above
approximations.

5.1 Setup

The initial conditions are generated by placing dark-matter and gas
particles into two different regular grids offset in each Cartesian
coordinate by half the grid size, and then displacing the particles
and assigning those peculiar velocities according to the Zel’dovich
approximation with spectra from the N-body gauge. Note that in all
the runs we have taken into account the scale-dependent growth rate
present in the simulations5 (see Fig. 1). We obtained the linear matter

5 We notice that in contrast with N-body simulations of a single matter fluid,
in simulations involving both dark matter and gas the growth factors/rates

Figure 3. Top: the power spectra of baryons, dark matter and their weighted
sum at redshift zero. The dark-matter spectrum is hidden by the total-matter
spectrum. The baryon, dark-matter and total-matter spectra from linear the-
ory are indistinguishable in this logarithmic plot. The error bars indicate the
variance in a bin, stemming from the finite boxsize. Note that the variance
itself is subject to the generated random numbers, such that the small vari-
ance in the bin for smallest k is a random fluke in a bin with very few modes.
Bottom: the ratio of the baryon spectrum to the dark-matter spectrum at
various redshifts (compare to fig. 1 in Angulo et al. 2013), demonstrating
that our choice of TREEPM parameters reproduces linear theory reasonably
well.

power spectrum and the transfer functions by using CLASS. We have
used the code FALCONIC (Valkenburg & Hu 2015), publicly available
at http://falconb.org, to generate the simulation initial conditions.

In our simulations, we followed the evolution of 5123 dark matter
plus 5123 gas particles in a periodic box of 1 h−1 Gpc using GADGET-
III (Springel 2005). In our fiducial run, we also account for the con-
tribution of radiation to the Hubble function. The softening length of
each particle type is set to 1/40 of the mean interparticle distance,
on a gravity mesh of 5123 cells, with the long-range/short-range
force-split (‘ASMTH’) set to 0.125 times a cell width. The values
of the cosmological parameters are: �m = 0.3175, �
 = 0.6825,
�b = 0.049, ns = 0.96, h = 0.67 and σ 8 = 0.83, in excellent agree-
ment with the latest Planck results (Planck Collaboration XIII 2016).

In the upper panel of Fig. 3, we show the dark-matter, baryon and
total-matter power spectra, together with linear theory prediction by
CLASS. As expected, we find that all species have basically the same
clustering on large scales, in agreement with linear theory. In the
bottom panel of that figure, we display the ratio between the power
spectra of baryons and dark matter at different redshifts, together
with the prediction by linear theory. We find an excellent agree-
ment between the results of our simulations and linear theory, with
subpercent offsets likely due to the resolution of our simulations.

Since in this paper we are just interested on the impact of the
different approximations used when generating initial conditions,
we have employed a simplified hydrodynamic scheme where the

and scale-dependent as in the case of massive neutrino cosmologies (Zennaro
et al. 2017).
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Figure 4. The deviation of the velocity-divergence power spectra of simulations with flawed initial conditions as described in Sections 3.1, 3.2, 3.3, 3.4 relative
to the reference simulation. Top row: a comparison of the various simulations. Other rows: each of the simulations deviation (data points) compared linear
perturbation theory (solid lines) at redshift z = 0, where applicable: approximations whose linear z = 0-spectrum predicts zero error are left out. The error at
the initial redshift z = 127 survives in the simulation down to z = 0, and does not decay as opposed to the linear perturbation theory prediction.

gas only is subject to adiabatic cooling, i.e. we do not consider
radiative cooling, star formation and supernova/AGN feedback.

5.2 Test cases

Next to our fiducial simulation, we set up four different initial condi-
tions, identical to the reference model (including the random seed),
apart from the initial power spectra of the species. That is, we gen-
erated initial conditions with each of the four approximations listed
in Sections 3.1, 3.2, 3.3 and 3.4. We ran hydrodynamic simulations
off of each of these four initial conditions, in order to compare the
final result to the reference model.

5.3 Results

For each simulation, we have computed the gas, dark-matter and
total-matter density and velocity power spectrum at z = 0. In Figs 4
and 5, we display the relative difference between the power spectra
from the simulations whose initial conditions have been generated
using a different approximation to the one where the initial condi-
tions were created without approximations. The bottom panels of
those figures show a zoom into the different curves together with
the prediction from linear theory at z = 0. We find that linear theory
is no good guidance for the final error in the simulation caused by
the initial conditions.

As expected, we find that different approximations lead to dif-
ferent biases. By setting velocity amplitudes using the longitudinal
gauge, we find that the error on most of the scales proved by our
simulations to be negligible, although differences reach the per cent
level on large scales and increase very rapidly, suggesting that this
approximation can lead to significant effect on very large box size
simulations. The largest error we encounter arises by using the same,
total matter, transfer functions when setting up the initial conditions

of both dark matter and gas. We find that the magnitude of the effect
can be as large as ∼10 per cent in the velocity power spectrum. By
employing the rescaling procedure, we find that the error locates be-
tween the previous two ones, with a subpercent magnitude in most
of the cases. As expected, the errors associated with using the wrong
offset when generating the initial conditions is only important on
small scales.

Even though the rescaling procedure leads to an internally self-
consistent setup, whose linear redshift-0 spectrum is identical to the
linear fiducial spectrum, the non-linear output of the simulation is
different. How the difference exactly arises is a matter for further
research, but we can point out that both setups model slightly dif-
ferent cosmologies, with different expansions rates. Moreover, the
power spectra of baryons and dark matter employed to generate the
initial conditions in both situations are different: at z = 0, the linear
power spectra of both components are very similar, and rescaling
those back will not make them different, while the power spectra
of each species from CLASS at z = 127 is significantly different to
each other (the fact that power spectra are different at z = 127 can
be seen in Fig. 2).

When comparing the rescaling procedure to the all-as-total-
matter approximation, it should be noted that in both cases the
spectra for both species, dark matter and baryons, are hardly dis-
tinguishable both at z = 127 and 0. It is therefore likely that the
difference between both setups is entirely attributable to the absence
of background radiation in the former. The fact that the former has
a smaller deviation from the reference simulation could possibly be
caused by the redshift at which it matches: the linear z = 0-spectrum
of the former approach by definition matches that of the reference
simulation. The latter approach matches only the total-matter spec-
trum at z = 127. The final comparison is done at z = 0.

It is interesting to point out that for approximations 3.3 and 3.4,
there is initially no error in the density spectra of the individual
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Figure 5. The deviation of the density power spectra of simulations with flawed initial conditions as described in Sections 3.1, 3.2, 3.3, 3.4 relative to the
reference simulation. Top row: a comparison of the various simulations. Other rows: each of the simulations deviation compared linear perturbation theory at
redshift z = 0, where applicable: approximations whose linear z = 0-spectrum predicts zero error are left out.

species, where for the latter approximation also no error in the
velocity spectra exists. However, the final spectra do contain an
error in all quantities for all species.

6 C O N C L U S I O N S A N D D I S C U S S I O N S

Upcoming cosmological surveys will collect enough data to al-
low subpercent constraints on the value of the cosmological pa-
rameters that will shed light on the several aspects such as the
nature of dark energy and the neutrino masses. The constraints
on the value of the cosmological parameters are derived by com-
paring observational data against theoretical predictions. For the
latter, numerical simulations play an increasingly important role,
since they provide results into the fully non-linear regime and
as their own nature accounts for all complications inherent to
cosmology such as redshift–space distortions, halo/galaxy bias
and so on.

A very important step involved in the process of running a numer-
ical simulation is to generate its initial conditions. It is a standard
practice to make use of different approximations when setting up
the initial conditions of a numerical simulations. The purpose of
this paper is to quantify the error induced by those approximations
when running hydrodynamic simulations with both dark-matter and
gas particles.

We find that for simulations with boxes not large enough, where
radiation perturbations become important, the correct way to gen-
erate initial conditions is to use the transfer functions from Boltz-
mann solvers such as CAMB or CLASS and account for both the scale-
dependence growth factors/rates present in the case of several fluids.
We also find that accounting for the contribution of radiation to the
Hubble function becomes important at high redshift and can signif-
icantly change the results on those epochs.

Using any of the wrong approximations leads to an inconsistent
setup, with the wrong boundary conditions for the correct set of
equations to be solved. Not surprisingly, as non-linearities grow, the
initial error does not decay, rather it survives until redshift zero. The
error in large baryon–dark-matter simulations, such as the Illustris
simulation (Vogelsberger et al. 2014) and the Eagle suite (Schaye
et al. 2015), is at least several per cent in the spectra of the total
matter, dark matter and baryons, as these simulations make three of
the unnecessary approximations at once (rescaling the total-matter

power spectrum from z = 0 to the initial redshift, assigning that
total-matter power to both species, without correcting for the offset
grids). Note that the method described in those references is exactly
what is implemented in N-GENIC (Springel et al. 2005) and 2LPTIC

(Scoccimarro 1998).
We however emphasize that even if the initial conditions have

been set up properly, numerical artefacts can couple small-scale
power from two different fluids (Angulo et al. 2013) erasing the
memory from the initial conditions and yielding results in disagree-
ment with the expectation of linear theory on large scales. Secondly,
unless the simulation code is able to account for radiation perturba-
tions, following the Newtonian dynamics of a set of particles whose
initial conditions have been set up using the output of a Boltzmann
code at high redshift will induce clustering differences on large
scales with respect to the Boltzmann code at later times. A way to
resolve this issue would be, following Zennaro et al. (2017) and
Schmidt (2016), to write down the equations governing the New-
tonian evolution of a system comprised by two fluids and extract
from that system the growth factors/rates and use those to ‘rescale’
the z = 0 power spectrum from the Boltzmann code, or to add radi-
ation perturbations to the construction of the gravitational potential
at each time step (Brandbyge et al. 2017). This will guarantee the
correct clustering amplitude on linear scales and will reproduce the
correct clustering of the Boltzmann code at low redshift. We plan
to investigate this in a separate paper.

Whether one should set the initial conditions using the method
described in this paper or using rescaling techniques depends on
the type of output desired. While the former will produce outputs at
high redshift (low redshift) with clustering properties in agreement
(disagreement) with Boltzmann solvers, the situation is the opposite
when using rescaling techniques. We believe the method presented
here is well suited for small box size simulations down to z = 0
(such as Illustris of Eagle) or for large box size simulations at high
redshift such as those to study the Epoch of Reionization.
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